

GEOTECHNICAL DESIGN REPORT PASSENGER RAIL STATION IMPROVEMENTS WELLS TRANSPORTATION CENTER WELLS, MAINE

Prepared for: Vanasse Hangen Brustlin, Inc. South Portland, Maine

July 2023 09.0026004.01

Prepared by: GZA GeoEnvironmental, Inc. 707 Sable Oaks Drive, Suite 150 | South Portland, Maine 04106 207.358.5126

31 Offices Nationwide www.gza.com

Known for excellence Built on trust.

GZN

Known for excellence. Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

477 Congress Street Suite 700 Portland, ME 04101 T: 207.879.9190 F: 207.879.0099 www.gza.com

Via Email

July 14, 2023 File No. 09.0026004.01

Mr. Tim Bryant, P.E. Vanasse Hangen Brustlin, Inc. 500 Southborough Drive Suite 105B South Portland, Maine 04106

Re: Geotechnical Design Report Passenger Rail Station Improvements Wells Transportation Center Wells, Maine

Dear Tim:

We are pleased to provide this Geotechnical Design Report (GDR) to Vanasse Hangen Brustlin, Inc. (VHB) for the improvements to the passenger rail station at Wells Transportation Center in Wells, Maine. Our services were provided in accordance with the Subconsultant Agreement between VHB and GZA GeoEnvironmental, Inc. (GZA), signed on June 9, 2022, which incorporates GZA's proposal No. 09.P000142.22 dated January 26, 2022, and the attached *Limitations* included in **Appendix A**. GZA is providing geotechnical engineering services as a Subconsultant to VHB, who is under contract with Northern New England Passenger Rail Authority (NNEPRA) for design of the proposed station improvements.

It has been a pleasure serving VHB on this phase of the project, and we look forward to our continued work with you through project completion. If you have any questions regarding the report, or if we can provide further assistance, please do not hesitate to contact the undersigned.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

1 Hablere

Nicholas V. Williams, P.E. Project Manager

allis

Andrew R. Blaisdell, P.E. Consultant Reviewer

Christopher L. Snow, P.E. Principal

NVW/CLS/ARB:erc p:\09 jobs\0026000s\09.0026004.00 - vhb - nepra - wells transpo ctr\26004.01_finaldesign\report\final 26004.01 nnepra wells transpo ctr gdr.docx

Page | i

Page

TABLE OF CONTENTS

		-								
1.0	INTRODUCTION	1								
	1.1 BACKGROUND	1								
	1.2 OBJECTIVES AND SCOPE OF SERVICES	1								
2.0	SUBSURFACE EXPLORATIONS	2								
3.0	LABORATORY TESTING	2								
4.0	SUBSURFACE CONDITIONS	3								
	4.1 SURFICIAL AND BEDROCK GEOLOGY	3								
	4.2 SUBSURFACE PROFILE	3								
5.0	ENGINEERING EVALUATIONS AND RECOMMENDATIONS									
	5.1 GENERAL	5								
	5.2 INTERPRETATION OF MARINE CLAY PROPERTIES	5								
	5.3 EVALUATION OF FOUNDATION TYPES	5								
	5.4 PILE DESIGN CONSIDERATIONS AND RECOMMENDATOINS	6								
	5.4.1 Pile Type and Loading	6								
	5.4.2 Preliminary Drivability Analysis	6								
	5.4.3 Lateral Pile Analysis	7								
	5.5 SHALLOW FOUNDATIONS	7								
	5.6 FROST AND SUBGRADE CONSIDERATIONS	8								
	5.7 SEISMIC DESIGN	9								
6.0	CONSTRUCTION CONSIDERATIONS	9								
	6.1 FOUNDATION SUBGRADE PREPARATION	9								
	6.2 PILE INSTALLATION CONTROL	9								
	6.3 EXCAVATION AND DEWATERING	9								

FIGURES

Figure 1	Locus Plan
Figure 2	Boring Location Plan

APPENDICES

APPENDIX A	Limitations
APPENDIX B	Test Boring Logs
APPENDIX C	Laboratory Test Results

1.0 INTRODUCTION

This report presents the results of GZA GeoEnvironmental, Inc.'s (GZA's) geotechnical evaluation for the proposed improvements to the Wells Transportation Center in Wells, Maine. Our services were provided in accordance with our executed contract dated June 9, 2022, and the attached *Limitations* included in **Appendix A**.

GZA is providing geotechnical engineering services as a Subconsultant to Vanasse Hangen Brustlin, Inc. (VHB), who is under contract with the Northern New England Passenger Rail Authority (NNEPRA) for design of the proposed station improvements.

1.1 BACKGROUND

The project includes improvements to the existing station, including a new platform south of the No. 2 track and a new pedestrian overpass to access the new platform. The site is located between Route 109, Interstate 95 (I-95) and the railroad in Wells, Maine as shown on **Figure 1 - Locus Plan**. A new 200-foot platform will be located on the south side of the railroad opposite the existing platform. It will consist of a 120-foot-long, reinforced concrete, high-level platform structure, and an 80-foot-long, paved, low-level platform. The pedestrian overpass will have an up-and-over configuration with stairs and elevators at both platforms connecting to an elevated walkway overpass over the No. 1 and No. 2 tracks. The layout of the proposed improvements is shown on **Figure 2 - Boring Location Plan**.

1.2 OBJECTIVES AND SCOPE OF SERVICES

The objectives of our work were to evaluate subsurface conditions and to provide final geotechnical engineering recommendations for the proposed improvements to the existing station. To meet these objectives, GZA completed the following Scope of Services:

- Conducted a site visit to observe surficial conditions and reviewed available plans, and mapped surficial and bedrock geology of the site;
- Coordinated and observed preliminary and final subsurface exploration programs consisting of seven test borings, to evaluate subsurface conditions;
- Conducted laboratory testing programs to evaluate classification and engineering properties of the site soils;
- Completed geotechnical evaluations for soil properties; ASD factors of safety associated with geotechnical design elements, capacity of pile foundations; pile drivability; and bearing capacity of soil.
- Developed geotechnical engineering recommendations including foundation design recommendations for driven pile and shallow foundations, and design recommendations for the preferred foundation type;
- Evaluated potential settlement beneath earth-bearing structures; and
- Prepared this report summarizing our findings and final design recommendations.

2.0 SUBSURFACE EXPLORATIONS

GZA completed a preliminary subsurface exploration program consisting of five test borings (GZ-1 through -5) between December 5 and 10, 2018. Two additional borings (GZ-101 and -102) were drilled as part of the final design phase between August 2 and August 3, 2022. Borings were completed on both sides of the railroad and at the approximate locations of the pedestrian walkway structures.

The borings were drilled using an ATV-mounted drill rig and were backfilled with cuttings and gravel. VHB surveyed the as-drilled boring locations and elevations as indicated on **Figure 2**. Elevations referenced in this report are in feet and refer to the North American Vertical Datum of 1988 (NAVD88).

New England Boring Contractors of Hermon, Maine provided drilling services and coordinated utility clearance, and private utility clearance was provided by Maine Turnpike Authority. The borings were drilled to depths of approximately 36 to 77 feet below ground surface. GZA personnel monitored the drilling work and prepared logs of each boring, and Pan-Am Railways provided flagging personnel throughout the program. The boring logs are included in **Appendix B**.

The borings were drilled using 3- and 4-inch casings and drive-and-wash drilling techniques as noted on the boring logs. Standard Penetration Testing (SPT) and split-spoon sampling were performed continuously through the fill material (with the exception of GZ-2), then at 5-foot intervals thereafter, using a 24-inch-long, 1-3/8-inch inside-diameter sampler. Pocket Penetrometer tests were conducted to assess the undrained shear strength of Clay. Two thin-walled tube samples were taken in boring GZ-3 to provide samples for use in laboratory compressibility testing and laboratory vane shear testing.

A driven rod probe was advanced to practical refusal below the depth of sampling in boring GZ-1 to estimate the overburden thicknesses. A roller cone was advanced approximately 6 to 7 feet into probable bedrock in borings GZ-2 and GZ-3, and 5 feet of rock coring was performed in borings GZ-101 and GZ-102.

3.0 LABORATORY TESTING

GZA retained Thielsch Engineering's Geotechnical Laboratory in Cranston, Rhode Island to complete a soil testing program to assess the gradation and engineering characteristics of the soil; and R.W. Gillespie & Associates' laboratory in Biddeford, Maine to perform the consolidation and strength testing of the cohesive soil encountered. The program included: eleven gradation analysis / Maine Department of Transportation (MaineDOT) Frost Classification / Unified Soil Classification System (USCS) assessments, ten moisture content tests, four Atterberg Limit tests, four laboratory vane shear tests, and two, one-dimensional consolidation tests on soil samples taken from the explorations. Results of the testing are included in **Appendix C**.

4.0 SUBSURFACE CONDITIONS

4.1 SURFICIAL AND BEDROCK GEOLOGY

The available surficial geology maps¹ indicate that the site is mapped primarily as a Marine nearshore Deposit. This unit consists of till that has been reworked by the sea during regressive phase of marine submergence and has had finer constituents (Silt and Sand) removed and redeposited as thin veneers over till, and may include Marine Clay and Sand, as well as isolated boulders. Bedrock is commonly present at shallow depths. Secondary units are mapped as Wetland and/or Artificial Fill deposits.

Based on available bedrock geologic mapping², the site is underlain by Devonian Granite of the Webhannet Pluton, described as medium to coarse-grained, massive to very slightly foliated gray granite.

4.2 SUBSURFACE PROFILE

Five subsurface units were encountered above bedrock at the site: Topsoil, Fill, Marine Sand, Marine Clay, and Sand/Glacial Till. The encountered thicknesses, generalized descriptions, and selected engineering properties of the units encountered are described in descending order from ground surface in the following table. Detailed descriptions of the materials encountered at specific locations are provided in the boring logs in **Appendix B**.

¹ Smith, Geoffrey W., 1999, Surficial geology, Wells Quadrangle, Maine: Maine Geological Survey, Open-File Report 99-104.

² Osberg, Philip H., Hussey II, Arthur M., Boone, Gary, M., 1985. Bedrock Geologic Map of Maine, Maine Geological Survey, Department of Conservation, map, scale 1:500,000.

Soil Unit	Approximate Encountered Thickness (ft)	Generalized Description
Topsoil	0.2 to 0.5	Very loose to medium dense, dark brown, fine to coarse SAND, with varying amounts of Silt and Gravel, traces of roots and leaves (USCS: SM). <i>Encountered in borings GZ-1, -2, -101 and -102</i>
Fill	0.8 to 7.2	Loose to medium dense, brown, fine to coarse SAND, little to some Gravel, trace to some Silt (USCS: SM, SP-SM). MaineDOT Frost Classification = 0 – III Encountered in all borings.
Marine Sand	0.8 to 12.5	Medium dense to very dense, gray to brown, fine to medium SAND, trace to some Silt (USCS: SP-SM, SM). MaineDOT Frost Classification = 0-II Encountered as layers interbedded with the marine clay in all borings.
Marine Clay	4.7 to 42	<u>From</u> medium stiff to very stiff, gray, Silty CLAY, little to trace fine Sand noted as lenses, seams and partings throughout deposit (USCS: CL); <u>to</u> Soft, gray, Silty CLAY, occasional trace fine Sand (USCS: CL). <i>Encountered in all borings.</i>
Sand or Glacial Till	2.4 to 24.5	Very dense, brown to gray, fine to coarse SAND, some to little Gravel, some to trace Silt (USCS: SM, SW-SM) Encountered in borings GZ-1, -2, -3, -5, -101, and -102
Top of Probable Bedrock Elevation	Enco	ountered Probable Top of Rock ranging from Approx. El. 60 to El. 102 Encountered in borings GZ-1, -2, -3, -101, and -102

The top of bedrock elevation was initially evaluated based on split spoon, roller bit, or drive probe refusals, and was confirmed with rock coring in GZ-101 and -102. Bedrock was described as hard, fresh, coarse-grained, black and white, GRANITE. The primary joints were typically very close to moderately spaced, low angle, planar, smooth, fresh to discolored, and partially open to very wide. The secondary joints were typically closely spaced, moderately dipping to high angle, planar, smooth, discolored, and moderately wide. The Rock Quality Designation (RQD) ranged from 12 to 48.

Groundwater was encountered at depths between 1.4 and 8.7 feet below ground surface at the time of the explorations, corresponding to approximately El. 129 to El. 124. Groundwater levels in the borings were taken during or immediately after drilling and may have been affected by drilling procedures, which included introduction of water for drilling purposes. Measured groundwater levels are presented on the boring logs.

Fluctuations in groundwater level occur due to variations in season, precipitation, and construction activities in the area. Consequently, water levels during construction are likely to vary from those encountered at the time the observations were made.

5.0 ENGINEERING EVALUATIONS AND RECOMMENDATIONS

5.1 GENERAL

GZA conducted geotechnical engineering evaluations in accordance with Allowable Stress Design (ASD), the 2015 International Building Code (IBC) and the AREMA Manual for Railway Engineering, latest edition. To the extent that portions of these documents are applicable, we also referenced AASHTO LRFD Bridge Design Specifications 2019 Edition and the Maine Department of Transportation Bridge Design Manual. The sections that follow describe the evaluations made and the geotechnical basis for evaluation of each element.

5.2 INTERPRETATION OF MARINE CLAY PROPERTIES

The marine clay profile encountered at the site includes a heavily overconsolidated upper clay crust overlying moderately overconsolidated primarily stiff silty clay. Nearly all of the clay has experienced greater loading in the past than in its current condition. As a result of the overconsolidation, the material is less compressible, and tends to compress more rapidly than normally consolidated clay.

5.3 EVALUATION OF FOUNDATION TYPES

Foundation support types for the proposed transportation center improvements are outlined below. The site conditions include variable thicknesses of fill, marine clay and sand deposits overlying glacial till and bedrock. As previously described, the marine clay deposits typically consist of a stiff, moderately compressible layer.

VHB has indicated that the stairway/elevator shafts, bridge piers, and mini-high platform piers have very little tolerance for post-construction settlement due to the length and height of the pedestrian bridge spanning the railroad tracks and operational constraints of mechanical utilities in the elevators. To eliminate the risk of post-construction settlement of these elements, deep foundations were chosen for support.

The plans for the project indicate the new platform expansion will consist of the following:

- Stairway and elevators supported by H-piles on both sides of the proposed pedestrian bridge;
- A Pedestrian bridge spanning the railroad tracks supported by H-piles;
- A mini-high platform supported by piers on the south side of the tracks, each pier supported by pairs of H-piles;
- An ADA ramp located on the south side of the proposed High Platform supported by H-piles or shallow foundations; and
- A lower platform constructed as an earth filled structure with timber facing and bituminous concrete surface.

5.4 PILE DESIGN CONSIDERATIONS AND RECOMMENDATOINS

5.4.1 Pile Type and Loading

It is our understanding that VHB plans to utilize ASTM A572 Grade 50 steel HP10x42 piles to support the proposed stairway, elevator, and bridge structures. VHB provided an axial design load of 120 kips per pile. The piles will be driven to refusal on or near the top of rock to achieve the required axial geotechnical resistance. Since the piles will gain support largely in end bearing, there is no reduction for group interaction in axial compression.

Axial Capacity

The H-piles will gain axial geotechnical compressive resistance through a combination of skin friction and end bearing on or near the bedrock surface. In GZA's experience for piles gaining a significant portion of their geotechnical resistance on bedrock, the drivability resistance will control the geotechnical static resistance of the pile. We recommend that the pile-driving criteria be established based on dynamic pile testing with signal-matching analysis. Based on the loads provided, piles should be driven to 300 kips to provide a factor of safety of 2.5 on axial design load.

Axial tension capacity may be assumed to be 13 kips per pile based on a factor of safety of 3 and an embedment of at least 25 feet.

5.4.2 Preliminary Drivability Analysis

GZA completed a wave equation analysis to assess drivability of the proposed piles. A Delmag D16-32 open-end diesel hammer with maximum rated energy of 40,200 foot-pounds was evaluated driving a 25- to 70-foot-long ASTM A572 Grade 50 steel HP10x42 pile. The analyses were completed using GRLWEAP software.

Pile Location and Type	Embedded Pile Length	Driving System	Required Geotechnical Capacity (kips)	Max Driving Stress (ksi)	Final Penetration Resistance (blows per inch)
North Stairway/Elevator	25 feet	Delmag D16-32*	300	37	8
West Side of High Platform	70 feet	Delmag D16-32 **	300	33	8

*Hammer was operated on the lowest fuel setting (1095 psi).

** Hammer was operated on the highest fuel setting (1500 psi).

The results show that the driving stresses do not exceed the limiting driving stress of 45 ksi for ASTM A572 steel (0.9fy), and that the pile can be driven with a blow count between approximately 6 and 15 blows per inch. In our opinion a diesel hammer system similar to the typical hammer system used in the preliminary analysis would be suitable to install the piles to an ultimate capacity of 300 kips providing a factor of safety of 2.5 on a 120-kip design capacity. To limit driving damage, the steel H-piles should be fitted with APF Hard-Bite Points Model HP-77600-B or similar.

5.4.3 Lateral Pile Analysis

GZA developed a design soil profile for lateral pile evaluation at the shallowest anticipated location (North Elevator/Stairway). The profile reflects the soil conditions encountered in the test borings.

	L-PILE [®] INPUT PARAMETERS NORTH STAIRWAY/ELEVATOR AREA, PILE LENGTH = 26 FT (BORING GZ-101)												
Stratum	Soil Model	Top of Layer Elevation (ft- NAVD 88)	Layer Thickness (ft)	k (pci) / E50 / UC (psi)	φ' (deg) / Su (psf)	γ _e (pcf)							
Fill	Reese Sand	134.0 ¹	6.5	85	32	125							
Marine Sand	Reese Sand	127.5	6	55	32	56							
Marine Clay	Stiff Clay	121.5	10	E ₅₀ =0.01	1000	46							
Glacial Till	Reese Sand	111.5	9.5	85	35	66							
Bedrock	Weak rock	102.0		Krm = 0.0005		96							

1. The top of the pile is at El. 128, assume Marine Sand is up to El. 128 at the top of the pile.

The pile was modeled as both a pinned top connection (0 moment) assuming pile embedment into concrete less than 2 times the pile width, and as a fixed top connection (0 rotation) assuming the pile was embedded at least 2 times the pile width.

GZA conducted lateral pile analyses to estimate the amount shear to deflect the top of the pile ¼" and ½" with the pile bending about the weak or strong axes considering an ASTM A572 Grade 50, HP 10x42 pile. Lateral pile analysis used the Ensoft, Inc. LPILE version 2016.9.06 software. The axial load was 120 kips, representing the design axial load, and a maximum shear of up to 10 kips was provided by VHB. Our results are summarized in the table below.

	L-PILE [®] RESULTS												
			1/4" Deflection		1/2" Deflection								
Orientation	Condition	Shear applied (kips)	Top Rotation (rad)	Max Total Stress (psi)	Shear applied (kips)	Top Rotation (rad)	Max Total Stress (psi)						
Weak	Pinned	2.75	0.004	17,948	4.5	0.008	24,891						
¹ Weak	Fixed	7.75	0	32,754	10	0	40,501						
Strong	Pinned	4.75	0.004	15,657	7.5	0.007	19,697						
¹ Strong	Fixed	10	0	21,864	-	-	-						

1. Weak Axis – fixed condition resulted in pile overstressing based on 0.55*fy (AREMA).

2. Strong Axis – fixed condition resulted in a total of 0.2" deflection.

5.5 SHALLOW FOUNDATIONS

GZA evaluated the option of supporting the proposed ADA ramp structure on spread footing foundations, bearing on medium dense granular fill.

Based on the plans, the proposed spread footing width is 9 feet, and VHB provided a design footing pressure of 1,500 psf and design life of 50 to 75 years. We anticipate that stress increases from the new fill and spread footings would cause recompression of the marine clay. We estimate that the total post-construction settlement will be approximately ½ to ¾ inches, relative to the pile supported platform which is anticipated to have negligible settlement. It is anticipated that this magnitude of differential settlement can be accommodated using a typical bridging plate. We recommend the ramp footing contact pressure be limited to 1.9 ksf and that the footings be approximately 9 feet wide.

The lower platform will consist of an earth-filled retaining structure with a paved surface. Considering the maximum proposed fill height up to approximately 3 feet, and that the loading will be moderate, we estimate the post-construction settlement of the lower platform to be on the order of $\frac{1}{2}$ inch. The structural engineer should review the estimated settlement magnitude to access its acceptability for the continued performance of the proposed structure.

Buried Retaining Walls

It is recommended that the walls be backfilled with free draining material compacted to at least 95% of the maximum dry density (ASTM D1557) (92 % maximum within 5 feet of the wall). For wall design, a moist unit weight of 135 pcf and an internal angle of friction of 32 degrees are recommended for granular backfill. A drainage system should be provided to prevent the buildup of hydrostatic pressures behind the walls. Drainage may consist of 4-inch diameter weep holes through the wall, spaced 10 feet on center. The walls should also be designed for any surcharge loads that may occur, including construction traffic.

For walls that are unrestrained at the top, an active soil pressure coefficient (K_a) of 0.3 is recommended. For foundation and retaining walls that are restrained at the top, an at-rest soil pressure coefficient (K_o) of 0.5 is recommended. Foundation walls not designed for lateral earth pressures should be backfilled evenly on both sides with a maximum difference of 2 feet between the height of the material on each side.

Lateral loads and base shear forces applied to foundation walls may be resisted by bottom friction on the footings. We recommend using the ultimate friction factors tabulated below to estimate sliding resistance.

Bearing Material	Ultimate Sliding Coefficient
Compacted Fill or Marine Sand	0.4
Silty Clay	0.3

The minimum factors of safety for sliding and overturning under static loads should be 1.5 and 2, respectively. Passive soil resistance should be ignored when analyzing for overturning and sliding.

5.6 FROST AND SUBGRADE CONSIDERATIONS

Based on the MaineDOT BDG, the Design Freezing Index for the site is approximately 1300. Therefore, in accordance with Figure 5-1 of the BDG, considering primarily saturated granular subgrade material, the estimated depth of frost penetration is about 55 inches. Consistent with MaineDOT BDG, we recommend that the new foundations be embedded at least 55 inches below the nearest ground surface exposed to freezing.

5.7 SEISMIC DESIGN

Seismic design parameters were developed in accordance with the 2015 IBC. Based on SPT N-Values and field vane test results, a Site Class D (stiff soil profile) is recommended for design. The peak ground acceleration coefficient, and short- and long-period spectral acceleration coefficients were interpolated from the AASHTO design guide maps (3.10.2.1-1 through -21 as appropriate). Based on the site coordinates, the recommended AASHTO Response Spectra (Site Class D) for a 7 percent probability of exceedance in 75 years are summarized for the site are as follows:

SITE CLASS D SEISMIC DESIGN PARAMETERS										
Parameter	Design Value									
Mapped short-period spectral response acceleration, Ss	0.250 g									
Mapped long-period spectral response acceleration, S ₁	0.078 g									
Short-period site coefficient, Fa	1.6									
Long-period site coefficient, Fv	2.4									

Based on depth to groundwater and density of the subsurface soils, the Site is not likely to be susceptible to liquefaction.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 FOUNDATION SUBGRADE PREPARATION

Excavation to footing subgrade should be performed using a smooth-edged bucket in order to limit disturbance of soil subgrades.

6.2 PILE INSTALLATION CONTROL

We recommend that the pile installation be controlled using wave equation analysis of the contractor's proposed driving system and field logging of the pile installation, and that final penetration resistance be based on dynamic pile testing with signal matching analysis. We recommend that two dynamic pile tests with signal matching be performed at the site at the end of initial drive and again at the beginning of restrike 24 hours later.

6.3 EXCAVATION AND DEWATERING

Excavation for the proposed piers and elevators are anticipated to extend approximately 5 to 6 feet below existing grades. Due to the proximity to the railroad, the excavation planning will need to consider the track support / embankment requirements of the railroad operator. It may be necessary to provide temporary lateral support to meet those requirements. Cantilever or internally braced steel sheet pile systems may be suitable for temporary support at this site.

Groundwater may be present at or near the ground surface for excavations near track level. Dewatering may be necessary to remove water that may accumulate in excavations due to surface runoff and infiltration. We anticipate that dewatering, if necessary, can be achieved by pumping from sumps placed within the excavations.

The contractor should be responsible for controlling groundwater, surface runoff, infiltration and water from all other sources by methods which preserve the undisturbed condition of the subgrade and permit foundation construction in-the-dry. Discharge of pumped groundwater and river water should comply with all local, State, and federal regulations.

P:\09 Jobs\0026000s\09.0026004.00 - VHB - NEPRA - Wells Transpo Ctr\26004.01_FinalDesign\Report\DRAFT 26004.01 NNEPRA Wells Transpo Ctr GDR_nvw.cls.arb.docx

7/14/2023 PASSENGER RAIL STATION IMPROVEMENTS WELLS TRANSPORTATION CENTER 09.0026004.01

FIGURES

7/14/2023 PASSENGER RAIL STATION IMPROVEMENTS WELLS TRANSPORTATION CENTER 09.0026004.01

APPENDIX A – LIMITATIONS

GEOTECHNICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Cost Estimates

11. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes. These estimates may involve approximate quantity evaluations. Note that these quantity estimates are not intended to be sufficiently accurate to develop construction bids, or to predict the actual cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information. Actual costs may vary over time and could be significantly more, or less, than stated in the Report.

Additional Services

12. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

7/14/2023 PASSENGER RAIL STATION IMPROVEMENTS WELLS TRANSPORTATION CENTER 09.0026004.01

APPENDIX B – TEST BORING LOGS

	TEST BORING LOG													
G		SZA SeoE Engine	nvir or ars and S	nmer Scient	ntal, ists	Inc.	Vanasse Hangen Brustlin, Inc. Wells RR Station Wells, Maine				EXPLORATION NO.: GZ-1 SHEET: 1 of 3 PROJECT NO: 09.0026004.00 REVIEWED BY: N. Williams			
Logg Drilli Fore	Logged By: B. Woodman Drilling Co.: New England Boring Contractors Foreman: W. Hoeckele							of Rig: ATV <i>I</i> odel: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface Ele ing Depth rt - Finish:	,E): N177913.8, E ev. (ft.): 132.8 (ft.): 65.5 12/10/2018 - 1	H. Datum: V. Datum:		
Ham	mer Ty	pe: Do	onut/Aut	omat	ic Ha	mmer	Sam	oler Type: ss			Ground	wate	r Dept	th (ft.)
Ham Ham Auge	mer We mer Fa er or Ca	eight (II (in.): Ising (lb.): 14 30 D.D./I.D	0 Dia (i	n.): 4.	5"/4"	Sam Sam Rock	pler O.D. (in.): _{2.0} pler Length (in.): ₂₄ c Core Size:		12/10/18	3 1140		8.7	7 10 min
Depth (ft)	Blows/ Core	No.	Depth	Pen.	Rec.	Blows	SPT	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation e)	emarl	Field Test	ta tie constraint to the second seco
-	Rate	S-1	0.0- 2.0	24	13	WOH 7 12	19	S-1: Loose, brown, fine trace Silt, dry. -FILL- (SP-SM)	e to coarse	e SAND, lit	tle Gravel,	1	Data	0.5 TOPSOIL 132
- - 5 _	-	S-2	4.0- 6.0	24	6	78 710	15	S-2: Medium dense, b Gravel, trace Silt, wet.	rown, fine t (SP-SM)	to coarse S	SAND, little			FILL
-	-	S-3 S-4	6.0- 8.0 8.0-	24	16 13	12 6 8 12 11 17	14	S-3: Top 14": Medium SAND, little Gravel, trad Bottom 2": Gray, fine to	dense, bro ce Silt, wei medium S	own, fine to t. (SP-SM) SAND, little	e Silt, wet.			7.2125.
- 10 _	-	S-5	10.0 10.0-	24	20	24 29 26 25	41	(SM) S-5: Very dense, brow	n, fine to n n, fine to n	nedium SA	ND, little Silt.			MARINE SAND
-	-	S-6	12.0 12.0- 14.0	24	13	22 24 8 11 7 5	47	(SP-SM) S-6: Top 9": Very dens trace Silt. (SP-SM)	se, brown,	fine to mee	dium SAND,	2		12.8 120.
- 15 _ -	-	S-7	14.0- 16.0	24	16	65 78	12	Bottom 4": Gray, Silty (S-7: Stiff, gray, Silty C	CLAY, little LAY, trace	fine Sand fine Sand	, wet. , wet. (CL)			
-	-	S-8	19.0-	24	24	43		S-8: Medium stiff, gray	v, Silty CLA	Y. (CL)				MARINE CLAY
20 _	-		21.0			46	7	PP=1.25 tsf						22.5 110
- _25 _ - -	-	S-9	24.0- 26.0	24	17	9 11 15 15	26	S-9: Medium dense, g Silt, wet. (sm)	ray, fine to	medium S	AND, little	3 4		MARINE CLAY WITH SAND LAYERS
30	1 - Sar	nples	S-1 thro	ugh S	6-5 sa	ampled usir	ng a sp	lit spon driven with a 14	0 lb Rope a	& Cathead	hammer. Auto	matio	c ham	mer frozen.
REMARKS	2 - Sar 3 - Afte 26.0'-3 4 - Adv	nples er Sam 5.0'. ance o	S-6 thro ple S-9, drive pro	ugh 5 , adva obe fr	5-9 sa anced om 3	impled usin I roller cone 5.0'-65.5' to	ig a sp e to 35 o refus	lit spoon driven with an a .0'. Intermittent increase al. Advancement noted i	automatic l in resistar n the casir	nammer. nce during ng blows /	advancement i	ndica ın.	ated po	ossible sand layers fron
See approved been than	Log K oximate made those p	ey fo boun at the oresen	r explar daries b times a t at the f	natior etwee and u times	n of en so nder the r	sample de il and bedr the condition neasureme	escripti ock typ ons sta ents we	on and identification p oes. Actual transitions m ated. Fluctuations of gro ere made.	rocedures ay be grac oundwater	. Stratifica dual. Wate may occur	ition lines rep r level readings due to other f	resei s hav actoi	nt l 'e rs	Exploration No.: GZ-1

	TEST BORING LOG															
GZ		GZA GeoE Engine	nvir or ers and S	nmer Scienti	ntal, ists	Inc.	Vanasse Hangen Brustlin, Inc. Wells RR Station Wells, Maine				EXPLORATION NO.: GZ-1 SHEET: 2 of 3 PROJECT NO: 09.0026004.00 REVIEWED BY: N. Williams					
Logg Drilli Fore	Logged By: B. Woodman Drilling Co.: New England Boring Contractors Foreman: W. Hoeckele							of Rig: ATV Model: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface Ele ing Depth t - Finish:	I,E):N177913.8, E2834118.0 H. Datum: lev. (ft.): 132.8 V. Datum: i (ft.): 65.5 12/10/2018 - 12/10/2018				um: um:	
Ham	mer Ty	pe: Do	onut/Aut	tomati	c Hai	mmer	Sam	oler Type: SS		Data	Ground	wate	Dept	h (ft.)	Stab Tim	
Ham Ham Auge	mer We mer Fa er or Ca	eight (II (in.): asing (lb.): 14 : 30 D.D./I.D	0 Dia (i	n.): 4.8	5"/4"	Sam Sam Rock	bler O.D. (in.): _{2.0} bler Length (in.): ₂₄ Core Size:		12/10/18	3 1140		8.7		10 min	<u>e</u>
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	le Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation e)	Remark	Field Test Data	Depth (ft.)	Stratum Description	(ft.)
- - - 35	-															
	3 6 7 8 12													MARIN SAI	IE CLAY WI	ITH ;
40 45	20 29 29 61 47 32													<u>41 </u>		<u>91.8</u>
	30 25 20 18 17 15 13 37 17													PROB/ GL	ABLE SAND ACIAL TILL	OR
- - - - 60	20 35 111 54 17															
REMARKS																
See appro been than	Log K oximate made those p	e boun at the presen	r explai daries b times a t at the	nation betwee and u times	of so en so nder the n	sample de il and bedr the conditi neasureme	escripti ock ty ons st ents we	on and identification poes. Actual transitions mated. Fluctuations of groeter made.	procedures hay be grad bundwater	Stratifica dual. Wate may occur	tion lines rep r level readings due to other f	reser s hav actor	nt E e s	Explor C	ation No.: SZ-1	

								TEST BORIN	G LOG						
GZ		GZA GeoE Engine	nvir or ers and S	nmen Scienti	ntal, ists	Inc.	Vanasse Hangen Brustlin, Inc. Wells RR Station Wells, Maine				EXPLORATION NO.: GZ-1 SHEET: 3 of 3 PROJECT NO: 09.0026004.00 REVIEWED BY: N. Williams				
Logg Drilli Fore	Logged By: B. Woodman Drilling Co.: New England Boring Contractors Foreman: W. Hoeckele						Type Rig N Drilli Drive &	of Rig: ATV Model: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface Ele ing Depth t - Finish:	H. Datum: iev. (ft.): 132.8 v. (ft.): 65.5 i 2/10/2018 - 12/10/2018				m: m:
Ham	mer Ty	pe: Do	onut/Aut	omati	c Har	nmer	Sam	oler Type: SS		Data	Ground	wate	r Dept	h (ft.)	Otob Time
Hami Hami Auge	mer We mer Fa er or Ca	eight (II (in.): asing (lb.): 14 : 30 D.D./I.D	0 Dia (ii	n.):4.5	5"/4"	Sam Sam Rock	oler O.D. (in.): _{2.0} oler Length (in.): ₂₄ c Core Size:		12/10/18	3 1140		8.7		10 min
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	ie Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation e)	Remarl	Field Test Data	(ft.) (ft.)	Stratum Stratum Stratum
-	19 41														
_	38 77													PROBA GLA	BLE SAND OF CIAL TILL
65 _	130		65.5-					Driven rod probe refusa	al at 65.5' i	n probable	bedrock.			65.5 PROBAE	67.3 BLE BEDROCH
_			65.5					End of exploration at 6	5.5 feet.						
- 70															
_															
75 _															
-															
- 80															
85 _															
-															
- - 00															
REMARKS	<u> </u>	1	1	<u> </u>			I	1				_	<u> </u>	1	
See appro been than	Log K oximate made those p	ey fo boun at the presen	r explar daries b times a t at the	nation etwee and ur times	of soinder f nder f	sample de il and bedi the conditi neasureme	escripti ock typ ons sta	on and identification poss. Actual transitions mated. Fluctuations of growing made.	procedures hay be grad bundwater	Stratifica dual. Wate may occur	tion lines rep r level readings due to other f	reser hav actor	nt E e rs	Explora G	tion No.: Z-1

									TEST BORIN	G LOG								
G		BZA BeoE	nvir or ers and S	n mer Scient	ntal, ists	Inc.			Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, Ind ation ine	C.	EXPL SHEE PROJ REVII	ORATIO T: IECT NO EWED B	N N 1 (): 09 Y: N	D.: 0 of 2 .0026 I. Willi	GZ-2 004.00 iams		
Logo Drilli Fore	ged By: ng Co.: man:	B. W New W. H	oodmar England oeckele	ı I Bori	ng Co	ontracto	ors	Type Rig M Drillin Drive 8	of Rig: ATV Iodel: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface El ring Depth rt - Finish:	I,E): N177 ev. (ft.): i (ft.): 49 : 12/10/2	7930.8, E2 135.3 9 2018 - 12	28342 2/10/	36.1 2018	H. Dat V. Dat	um: um:	
Ham	mer Ty	pe: Au	utomatic	Ham	mer			Samp	oler Type: _{SS}		Data	(Groundw	vate	Dept	h (ft.)	Stab. T	Time
Ham Ham Auge	ammer Weight (lb.): 140 ammer Fall (in.): 30 ger or Casing O.D./I.D Dia (in.):4.5/4", 3.5/3"Sampler O.D. (in.): 2.0 Sampler Length (in.): 2.4 Sampler Length (in.): 2.4 Rock Core Size:DateTimeWater DepthStab. Time $\frac{1}{\text{ger or Casing O.D./I.D Dia (in.):4.5/4", 3.5/3"Sampler Length (in.): 2.0Sampler Length (in.): 2.4Rock Core Size:DateTimeWater DepthStab. Time\frac{1}{\text{ger or Casing O.D./I.D Dia (in.):4.5/4", 3.5/3"Sampler Length (in.): 2.0Sampler Length (in.): 2.4Rock Core Size:DateTimeWater DepthStab. Time\frac{1}{\text{per or Casing O.D./I.D Dia (in.):4.5/4", 3.5/3"Sampler C.D. (in.): 2.0Sampler Description and Identification(Modified Burmister Procedure)\frac{1}{10}\frac{1}{10}\frac{1}{10}\frac{1}{10}\frac{1}{10}\frac{1}{(n)}$																	
Depth (ft)	Blows/ Core	No.	Depth	Pen.	Rec.	Blov	vs	SPT	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation e)		emarl	Field Test	Cepth (ft.)	Stratum Descriptio	lev. (ft.)
	Rate	S-1	(ft.) 0.0- 2.0	(in) 24	(in) 18	(per 6 12 2 11 1	20 11	Value 31	S-1: Dense, brown, fin little Silt, dry. (SP-SM)	e to coarse	e SAND, s	some Gr	avel,	Ř	Data	0.5	TOPSOIL	- 134.8
5_	-	S-2	4.0- 6.0	24	16	5 6 6 4	6 4	12	S-2: Loose, brown, fin (SP-SM)	e to mediu	m SAND, †	trace Si	lt, wet.				FILL	
-	- -																	
10 _	S-3 9.0- 11.0 24 14 15 16 18 S-3: Dense, gray, fine to medium SAND, trace Silt, wet. MARINE SAND S-4 11.0- 24 20 15 13 S-4: Top 18": Dense, gray, fine to medium SAND, trace MARINE SAND																	
-) 3-3 9.0- 24 14 15 16 5-3: Dense, gray, line to medium SAND, trace Slit, wet.) 11.0 14 18 20 34 (SP-SM) MARINE SAND S-4 11.0- 24 20 15 13 S-4: Top 18": Dense, gray, fine to medium SAND, trace MARINE SAND 13.0 19 19 32 Silt, wet. (SP-SM) Bottom 2": Gray, fine to medium SAND, some Silt, wet. 13 13 13 122.3																	
-	-	S-5	13.0- 15.0	24	13	7 5 6 6	5 6	11	Apparent oxidation thro S-5: Stiff, gray, Silty C	b meaium 3 bughout 2". LAY, little 1	SAND, sor (SM) fine Sand,	wet. (C	wet. L)					
15 _ - -		S-6	15.0- 17.0	24	24	7 6 6 7	6 7	12	PP=1.75 tsf S-6: Stiff, gray, CLAY (CL) PP=2.0 tsf	and SILT,	trace fine s	Sand, w	vet.					
- 20 _ -	-	S-7	19.0- 21.0	24	24	2 3 4 5	3 5	7	S-7: Medium stiff, CLA (CL) PP=1.5 tsf	AY and SIL	T, trace fir	ne Sand	, wet.	1		MA	RINE CL	AY
- 25 _ -	-																	
	-																	
REMARKS	1 - Afte possibl	er Sam	iple S-7, d layers	adva or gla	ance r acial t	roller co ill.	one f	from 2	1.0'-42.7'. Intermittent re	esistance d	uring rolle	er cone a	advancer	ment	from	33.3'-42	2.7', indica	ating
See appr been than	Log K oximate i made those p	ey for boun at the oresen	r explar daries b times a t at the f	nation etwee and u times	n of so en so nder the n	sample il and t the cor neasur	e de bedro nditio reme	scripti ock typ ons sta nts we	on and identification poes. Actual transitions mated. Fluctuations of gro	procedures hay be grad bundwater	. Stratifica dual. Wate may occu	ation lin er level r r due to	nes repro readings o other fa	eser hav actor	nt I e s	Explor (ation N 3Z-2	0.:

								TEST BORIN	G LOG							
G		GZA GeoE Engine	nvir or ers and S	imer Scienti	n tal, ists	Inc.		Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, Ind ation ine	с.	EXPLORATIO SHEET: PROJECT NO REVIEWED B	N N 2 : 09 Y: N	O.: 0 of 2 0.0026 1. Willi	6Z-2 004.00 ams		
Log Dril For	gged By: lling Co. eman:	B. W New W. ⊢	oodmar England loeckele	n d Bori e	ng Co	ontractors	Type Rig N Drilli Drive &	of Rig: ATV Iodel: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface Ele ring Depth rt - Finish:	,E): N177930.8, E2 ev. (ft.): 135.3 (ft.): 49 12/10/2018 - 12	8342 2/10/	236.1	H. Da V. Da	tum: tum:	
Har	nmer Ty	pe: Au	utomatic	Ham	mer		Sam	oler Type: _{SS}	1	Date	Groundv	vate	r Dept	h (ft.)	Stah T	imo
Har Har Auç	nmer W nmer Fa ger or Ca	eight (II (in.): asing (lb.): 14 : 30 D.D./I.D	0 Dia (i	n.): 4.:	5/4", 3.5/3"	Sam Sam Rock	oler O.D. (in.): _{2.0} oler Length (in.): ₂₄ a Core Size:		Date				eptii	Stab. 1	
Dept (ft)	Casing th Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	le Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation 9)	Remark	Field Test Data	Depth (ft.)	Stratum Descriptio	Elev. (ft.)
	-													М	ARINE CL	AY
	-													33.3		102.0
35	-															
	-													POS: G	SIBLE SAN LACIAL TI	ND OR
40	_															
	-											2		42.7		92.6
45	- 3:55 - 3:21													PROE	ABLE BEI	OROCK
	- 4:53 - 3:19													49		86.3
50			49.0- 49.0					Probable bedrock. End of exploration at 4	9 feet.							
55	-															
	-															
60	-															
REMARKS	2 - Inc from 4	rease i 2.7'-49	n resista).0'. Drill	ance (ing tir	duriną nes a	g roller con are noted ir	e adva the ca	ncement indicates prob asing blows / coring rate	able bedro column. R	ck at 42.7' ock chips	advanced rolle	r co sh re	ne unc ₀turn.	ler 1,0	00 lbs pres	sure
See app bee tha	e Log k proximate en made n those p	ey fo boun at the presen	r explar daries b times a t at the t	nation etwee and u times	of en so nder the n	sample de il and bedr the conditi neasureme	escripti ock typ ons sta ents we	on and identification poes. Actual transitions mated. Fluctuations of grooter made.	procedures hay be grad bundwater	. Stratifica dual. Wate may occur	tion lines repr r level readings due to other fa	esei hav actoi	nt e rs	Explo	ration N GZ-2	0.:

								TEST BORIN	G LOG							
G		SZA SeoE Engine	nvir or ərs and S	imer Scient	n tal, ists	Inc.		Vanasse Hangen B Wells RR St Wells, Mai	Brustlin, Ind ation ine	с.	EXPLORA SHEET: PROJECT REVIEWEI	TION I 1 NO: 0 D BY:	NO.: of 3 9.002 N. W	GZ-3 26004.0 illiams	0	
Logo Drilli Fore	ged By: ing Co.: eman:	B. W New W. H	oodmar England oeckele	ı 1 Bori 9	ng Co	ontractors	Type Rig N Drilli Drive 8	of Rig: ATV Nodel: Mobile B53 ng Method: Wash	Boring L Ground S Final Bor Date Star	ocation (N Surface Ele ring Depth rt - Finish:	,E): See plan ev. (ft.):130.((ft.): 77 12/6/2018 -	0 12/7/2	018	H. D V. D	atum: atum:	
Ham	mer Ty	pe: Au	utomatic	Ham	mer		Sam	oler Type: ss			Grou	ndwat	er De	pth (ft.)		
Ham Ham Auge	mer We mer Fal er or Ca	eight (II (in.): Ising (l b.): 14 30 D.D./I.D	0 Dia (i	n.): 4.	5/4", 3.5/3"	Sam Sam Rock	pler O.D. (in.): _{2.0} pler Length (in.): ₂₄ c Core Size:		Date	Time) 1	Natei	<u>Depth</u>	Stab. Ti	me
Depth	Casing Blows/	No	Depth	Samp Pen.	le Rec.	Blows	SPT	Sample Des (Madified	cription an	d Identifica	ition	mark	Fie Te	t bt	Stratum Description	(ft.)
(11)	Rate	NO. S-1	(ft.)	(in) 24	(in) 10	(per 6 in.) 1 WOH	Value	S-1: Loose gray/brow	n fine to c	oarse SAN	;) D_little Silt	Re B	Da	ta Ō		ШС
-	-		2.0			2 8	2	dry. (SP-SM)			B, indio olic,					
	-	S-2	2.0- 4.0	24	20	10 13 13 14	26	S-2: Medium dense, bi Silt, wet. (SP-SM)	rown, fine t	to coarse S	SAND, trace				FILL	
5 _	-	S-3	4.0- 6.0	24	14	11 12 13 15	25	S-3: Medium dense, bi Silt, wet. (SP-SM)	rown, fine t	to medium	SAND, trac	e				
-		S-4	6.0- 8.0	24	20	13 13 15 13	28	S-4: Top 14": Medium SAND, trace Silt, wet. (Bottom 6": Gray, fine to	dense, bro SP-SM) medium S	own, fine to SAND, trac	medium e Silt, wet.			7.2 8 N	ARINE SAM	122.8 √⊡22.0
	_	S-5	8.0- 10.0	24	24	24 57	9	S-5: Medium stiff, gray	v, Silty CLA	Y, wet. (C	L)					
10 _ ·	-	S-6	10.0- 12.0	24	16	12 13 15 19	28	S-6: Very stiff, gray, Si PP=3.5 tsf	ilty CLAY,	trace fine \$	Sand, wet.					
- - 15 _ -	-	U-1	15.0- 17.5	30	27			U-1: Shelby Tube 15'-7 Stiff, gray, Silty CLAY, 7	17.5' trace fine \$	Sand, wet.	(CL)			17.5	MARINE CLA	.Y _ <u>112.5</u>
- 20 _ -	-	S-7	19.0- 21.0	24	24	84 45	8	S-7: Stiff, gray, Silty C	LAY, trace	fine Sand	, wet. (CL)	1		19	SAND SEAN	Л _ <u>111.0</u>
- 25 _ - -	-	U-2	24.0- 26.0	24	24			U-2: Shelby Tube 24'-2 Stiff, gray, Silty CLAY,	26'. trace fine \$	Sand, wet.	(CL)			M	MARINE CLA	١Y
30 BEMARKS See	1 - Incr	ease i	n resista	ance	during	g roller con	e adva	ancement from 17.5'-19.0)' indicates	s possible s	and seam.	represe	ent	Expl	pration No).:
See appr beer than	Log K oximate n made those p	ey fo boun at the	r explar daries b times a t at the f	natior etwee and u times	1 of en so inder s the r	sample de il and bedr the conditi neasureme	escripti ock typons sta	on and identification p pes. Actual transitions m ated. Fluctuations of gro ere made.	rocedures ay be grac bundwater	. Stratifica dual. Wate may occur	tion lines r r level readin due to othe	represe ngs ha er facto	ent ve ors	Expl	oration GZ-3	Nc

								TEST BORIN	G LOG		-				
GZ		BZA BeoE Enginee	nvir or ers and S	nmei Scient	ntal, ists	Inc.		Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, Ind ation ine	с.	EXPLORATIO SHEET: PROJECT NO REVIEWED B	ON N 2 (): 09 (Y: N	O.: 0 of 3 0.0026 1. Willi	6Z-3 004.00 ams	
Logge Drillir Foren	ed By: ng Co.: nan:	B. W New W. H	oodmar England oeckele	ı d Bori	ing C	ontractors	Type Rig N Drilli Drive 8	o f Rig: ATV Jodel: Mobile B53 ng Method: &Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface El ing Depth rt - Finish:	I,E): See plan ev. (ft.): 130.0 1 (ft.): 77 12/6/2018 - 12/	7/20	18	H. Dati V. Dati	um: um:
Hamn	ner Ty	pe: Au	Itomatic	Ham	mer		Sam	pler Type: _{SS}	1	Data	Ground	vate	r Dept	h (ft.)	Stop Time
Hamn Hamn Auger	ner We ner Fal r or Ca	eight (l II (in.): sing C	ib.): 14 30 D.D./I.D	0 Dia (i	n.): 4.	5/4", 3.5/3"	Sam Sam Rock	pler O.D. (in.): _{2.0} pler Length (in.): ₂₄ c Core Size:		Date				epin	Stab. Time
Depth (ft)	Casing Blows/ Core	No.	Depth	Samp Pen.	Rec.	Blows	SPT	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation e)	emark	Field Test	Depth (ft.)	Stratum . Stratum . Description
35_	Rate	S-8	34.0- 36.0	24	24	WOH WOH WOH 3	0	S-8: Medium stiff, gray (CL) PP=0.75 tsf	γ, Silty CLA	ιΥ, trace fi	ne Sand, wet.	8	Data		
40		S-9	44.0- 46.0	24	6	wон wон wон wон	0	S-9: Soft, gray, Silty C	LAY, wet. ((CL)				MA	RINE CLAY
50		S-10 S-11	54.0- 56.0 59.0-	24	10	11 5 8 9 12 17	13	S-10: Loose, gray, fine S-11: Dense, gray, fine	∋ SAND, litt e SAND, so	tle Silt, we ome Silt, v	t. (SM) vet. (SM)			MA	80.0 RINE SAND
REMARKS				I	<u> </u>	1		1				L	I		
See appro been than t	Log K ximate made hose p	ey for bound at the resen	t explar daries b times a t at the t	natior etwe and u times	n of en so nder the r	sample de il and bedr the condition neasureme	escripti ock ty ons sta ents we	on and identification p pes. Actual transitions n ated. Fluctuations of gro ere made.	procedures. hay be grac pundwater	. Stratifica dual. Wate may occu	ation lines repr er level readings r due to other fa	reser hav actor	nt e rs	Explor C	ation No.: SZ-3

								TEST BORIN	G LOG					
G		GZA GeoE Engine	nvir or ers and S	1mei Scient	ntal, tists	Inc.		Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, In ation ine	C.	EXPLORATIO SHEET: PROJECT NO REVIEWED B	0N N 3 (0: 09 Y: N	0.: 0 of 3 0.0026 I. Willi	6Z-3 004.00 ams
Log Drill Fore	ged By: ing Co. eman:	B. W New W. H	oodmar England oeckele	ı 1 Bori ı	ing Co	ontractors	Type Rig N Drilli Drive 8	of Rig: ATV <i>I</i> odel: Mobile B53 ng Method: Wash	Boring L Ground S Final Bor Date Star	ocation (N Surface Ele ring Depth rt - Finish:	,E): See plan ev. (ft.): 130.0 (ft.): 77 12/6/2018 - 12/	7/20	18	H. Datum: V. Datum:
Han Han Han Aug	nmer Ty nmer We nmer Fa er or Ca	pe: Au eight (II (in.): asing (utomatic I b.): 14 30 D.D./I.D	Ham 0 Dia (i	ımer i n.): 4.:	5/4", 3.5/3"	Sam Sam Sam Rock	pler Type: _{SS} pler O.D. (in.): _{2.0} pler Length (in.): ₂₄ c Core Size:	r	Date	Groundv Time	vate N	r Dept /ater D	h (ft.) Depth Stab. Time
Deptl (ft)	Casing h Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	le Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation e)	Remark	Field Test Data	ti Gertaitum Stratum Stratum Gertaitum Gertai
65 _		S-12	61.0 64.0- 66.0	24	24	26 31 WOH WOH 4 6	43	S-12: Soft, gray, Silty	CLAY, trac	e fine San	d, wet. (CL)			MARINE SAND 62.56 MARINE CLAY 656
70 _	- - - - 4:32 - 4:50 - 5:27	S-13	69.0- 69.9 69.9- 69.9	11	9	24 65		S-13: Very dense, gra (SP) Probable bedrock.	y, fine to co	oarse SAN	D and Gravel.	2		GLACIAL TILL 69.9 6 PROBABLE BEDRO
75 _	5:15 7:09													77 5
80 _	-							End of exploration at 7	7 feet.					
85 _	-													
90	- - - 2 - Adv	lancer	roller c		0.71 :	3' Set up tr	core:	no core recovered. Adv	anced rolle	er cone un	der 1 000 lbs of	pres	sure f	rom 71 3' to 77 0'
REMARKS	Drilling	i times	are not	ed in	the c	asing blow	s / cori	ng rate column. Rock ch	nips observ	ved in wash	n return.	pres	Suici	
See appr beer than	Log k roximate n made i those j	key fo e boun at the presen	r explai daries b times a t at the	hation etwer and u times	n of en so Inder s the r	sample de il and bedr the conditi neasureme	escripti ock typons sta	on and identification poes. Actual transitions mated. Fluctuations of gro pre made.	procedures hay be grad bundwater	. Stratifica dual. Wate may occui	ation lines repr r level readings r due to other fa	esei hav actoi	nt e s	Exploration No.: GZ-3

								TEST BORIN	G LOG						
GZ		GZA GeoE	nvir or ars and S	n mer Scient	ntal, ists	Inc.		Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, Ind ation ine	c.	EXPLORATIC SHEET: PROJECT NC REVIEWED B	0N N 1 (0: 09 Y: N	D.: 0 of 2 0.0026 I. Willi	6Z-4 004.00 ams	
Logg Drillin Forer	ed By: ng Co.: man:	B. W New W. H	oodmar Englanc oeckele	n d Bori	ng Co	ontractors	Type Rig N Drilli Drive 8	of Rig: ATV Iodel: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N, Surface Ele ing Depth t - Finish:	E): N177870.8, E2 v. (ft.): 130.3 (ft.): 36 12/5/2018 - 12/	28342 5/20	46.5 18	H. Datum: V. Datum:	
Ham	mer Ty	pe: Au	Itomatic	Ham	mer		Sami	pler Type: ss			Groundy	vate	Dept	h (ft.)	
Hamı Hamı Auge	mer We mer Fal er or Ca	eight (l II (in.): Ising (14: 30 D.D./I.D	0 Dia (i	n.):		Sam Sam Rock	pler O.D. (in.): _{2.0} pler Length (in.): ₂₄ c Core Size:		12/5/18	1530		1.7	10 mir	<u>חפ</u> ו
Depth (ft)	Blows/ Core	No	Depth	Samp Pen.	Rec.	Blows	SPT	Sample Des (Modified	cription an Burmister	d Identifica Procedure	tion)	emar	Field Test	Generation Stratum	Elev. (ft.)
	Rate	S-1	(ft.) 0.0- 2.0	(in) 24	(in) 9	(per 6 in.) 2 2 4 4	Value 6	S-1: Loose, brown, find little Silt, little organics,	e to coarse , wet. (SM)	SAND, so	, me Gravel,	Ř	Data		<u>Ш</u>
-		S-2	2.0- 4.0	24	15	34 56	9	S-2: Loose, brown, fine (SM)	e to mediur	m SAND, s	ome Silt, wet.			FILL	
5 _		S-3	4.0- 6.0	24	14	39 1313	22	S-3: Medium dense, b Silt, black mottling, wet	rown, fine t t. (SP-SM)	to medium	SAND, trace				
-		S-4	6.0- 8.0	24	20	11 18 20 16	38	S-4: Top 10": Medium SAND, trace Silt, black Bottom 10": Grav, fine	dense, bro mottling, v to medium	own, fine to vet. (SP-SM n SAND, tra	medium Л) ace Silt.			6.8 MARINE SAN	123.5
10 _		S-5	8.0- 10.0	24	19	54 610	10	(SP-SM) S-5: Top 3": Gray, fine Bottom 16": Stiff, gray,	e to coarse	SAND, little	e Gravel, wet.			<u> </u>	_ 122.0
-		S-6	10.0- 12.0	24	15	14 13 18 21	31	(CL) S-6: Very stiff, gray, S	ilty CLAY,	wet. (CL)	Sand, wet.			MARINE CLA	Y
- 15 _ -		S-7	14.0- 16.0	24	14	39 1514	24	S-7: Medium dense, fi	ne SAND, s	some Silt, v	wet. (SM)			13 MARINE SAN	<u>117.3</u> ID <u>114.3</u>
- - 20 _ -		S-8	19.0- 21.0	24	24	13 34	6	S-8: Stiff, gray, Silty C	LAY, trace	fine Sand,	wet. (CL)				
- 25 _ -		S-9	24.0- 26.0	24	24	WOH 4 8 10	12	S-9: Stiff, gray, Silty C	LAY, trace	fine Sand,	wet. (CL)			MARINE CLA	Y
30		S-10	29.0-	24	24	23		S-10: Medium stiff, gra	ay, Silty CL	AY, little fir	ne Sand. (CL)				
REMARKS															
See appro been than	Log K oximate made those p	ey for boun at the presen	r explar daries b times a t at the f	nation etwee and u times	n of en so nder the r	sample de il and bedro the condition neasureme	escripti ock typ ons sta ents we	on and identification poes. Actual transitions mated. Fluctuations of groater made.	procedures. hay be grac bundwater	Stratificat dual. Water may occur	tion lines repr level readings due to other fa	eser hav actor	nt e s	Exploration No GZ-4	.:

								TEST BORIN	G LOG							
GZ		GZA GeoE Engine	nvir or ers and S	n mei Scient	ntal, ists	Inc.		Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, Ind ation ine	C.	EXPLORATION SHEET: PROJECT NO REVIEWED E	ON N 2 0: 09 3Y: 1	O.: C of 2 9.0026 N. Willi	GZ-4 004.00 iams		
Logg Drilli Fore	ed By: ng Co.: man:	B. W New W. H	oodmar England loeckele	ı d Bori	ing C	ontractors	Type Rig N Drilli Drive 8	of Rig: ATV Iodel: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface Ele ing Depth t - Finish:	,E): N177870.8, E 2 v. (ft.): 130.3 (ft.): 36 12/5/2018 - 12	28342 /5/20	246.5)18	H. Dat V. Dat	tum: tum:	
Ham	mer Tv	pe: Au	utomatic	Ham	mer		Sami	her Type: ee			Ground	wate	r Dept	h (ft.)		
Ham Ham Auge	mer We mer Fa er or Ca	eight (II (in.): asing (lb.): 14 : 30 D.D./I.D	0 Dia (i	n.):		Samı Samı Rock	oler O.D. (in.): _{2.0} oler Length (in.): ₂₄ core Size:		Date 12/5/18	1530	N	/ater <u>C</u> 1.7) ,	Stab. T 10 m	ime in
Depth (ft)	Casing Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	le Rec. (in)	Blows (per 6 in.)	SPT Value	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ation ?)	Remark	Field Test Data	Depth (ft.)	Stratum Descriptior	Elev. (ft.)
-			31.0			48										
-		S-11	34 0-	24	20	84		S-11 [.] Stiff grav Silty ()				M	ARINE CL	AY
35 _			36.0			4 8	8	Ne referel		/				36		94.3
-			36.0- 36.0					End of exploration at 36	6 feet.							
40 _																
-																
-	а а															
45 _																
-																
- 50																
_																
-																
55 _																
-																
60																
REMARKS			1									1				
See appro been than	Log K oximate made those p	ey for boun at the oresen	r explar daries b times a t at the t	natior etwe and u times	n of en so nder the r	sample de il and bedr the condition neasureme	escripti ock typ ons sta ents we	on and identification p bes. Actual transitions m ated. Fluctuations of gro are made.	procedures. ay be grac bundwater	Stratifica dual. Wate may occur	tion lines rep r level readings due to other f	resei s hav actoi	nt re rs	Explo	ration No GZ-4	D.:

								TEST BORIN	G LOG							
G		BZA BeoE	nvir or ers and S	n mer Scient	ntal, ists	Inc.		Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, Ind ation ine	c.	EXPLORATION SHEET: PROJECT NO REVIEWED E	ON N 1 0: 09 3Y: N	O.: 0 of 2 9.0026 N. Willi	SZ-5 004.00 ams		
Log Drill Fore	TEST BORING LOG Construction GZA GeoEnvironmental, Inc. December 3 and Scientists Vanasse hangen Brustlin, Inc. Weils, Maine EXPLORATION NO.: SHEET: Notes Restation Weils, Maine C2-5 SHEET: To 2 PROJUCE TNO: 09.0026004.00 REVIEWED BY: N. Williams orged By: B. Woodman Drilling Co: New England Boring Contractor forman: W. Hoeckele Type of Rig: ATV Rig Model: Mobile B53 Dree Mesh Boring Location (N.E): N177804.7, E2804337.3 Dree Mesh H. Datum: Y. Datum: H. Datum: Y. Datum: variance Vegith (Ib.): 140 Hammer Weight (Ib.): 140 Hammer Killing Returns Procedure) Sample Co.L (In): 2.0 Sampler Length (I															
Ham	nmer Ty	pe: Au	utomatic	Ham	mer		Sam	oler Type: SS		Data	Ground	wate	r Dept	h (ft.)	Ctab Time	
Han Han Aug	Hammer Type: Automatic Hammer Hammer Weight (lb.): 140 Hammer Fall (in.): 30 Auger or Casing O.D.I.D Dia (in.):4.5"/4"Sampler Type: SS Sampler D.D. (in.): 2.0 Sampler Length (in.): 2.0 Sampler C.D. (in.): 2.0															
Dept (ft)	h Blows/ Core	No.	Depth	Pen.	Rec.	Blows	SPT	Sample Des (Modified	cription an Burmister	d Identifica Procedure	ition	emar	Field Test	D (ft.)	Stratum	(#:)
(,	Rate	S-1	(ft.) 0.0-	(in) 24	(in) 7	(per 6 in.) 2 2	Value	S-1: Loose, dark brow	n. fine to co	parse SAN	D. little	<u>r</u>	Data		ш	
	-		2.0			23	4	organic matter, little Gr	avel, wet. ((SP)	,				FILL	
	-	S-2	2.5-	18	17	68	17	S-2: Top 6": Loose, da	ark brown, f	ine to coa	se SAND,			3	12	7.4
	-	S-3	4.0 4.0-	24	14	9 8 15	''	Bottom 11": Loose. ara	ie Gravel, v ay, fine to m	vet. (SP) nedium SA	ND, trace Silt.	1				
5_	-	S-4	6.0	24	22	19 16 15 16	34	wet. (SP-SM) S-3: Dense, brown, fin	e to mediu	m SAND, t	race Silt, wet.			MAF	RINE SAND	
	-	9.5	8.0	24	1	15 8	31	(SP-SM) S-4: Top 20": Dense, t Silt, wet. (SP-SM)	brown, fine	to medium	n SAND, trace			7.8	122	2.6
10 _	-	5-5	10.0	24		8 13	14	Bottom 2": Gray, Silty (S-5: Stiff, gray, Silty C	CLAY, trace LAY, little (e fine Sano Gravel. (Cl	d, wet. _)					
	-	S-6	10.0- 12.0	24	12	13 14 15 18	29	S-6: Very stiff, Silty CL	_AY, some	fine Sand,	wet. (CL)					
15 ₋	-	S-7	14.0- 16.0	24	24	54 55	9	S-7: Stiff, gray, Silty C PP=2.5 tsf	LAY, trace	fine Sand,	wet. (CL)					
20 _	-	S-8	19.0- 21.0	24	10	12 43	6	S-8: Stiff, gray, Silty C PP=1.75 tsf	LAY, trace	fine Sand,	wet. (CL)			MAI	RINE CLAY	
25 _	-	S-9	24.0- 26.0	24	12	4 11 7 5	18	S-9: Very stiff, gray, S PP>0.5 tsf	ilty CLAY, 1	trace fine S	Sand. (CL)					
30	-	S-10	29.0-	24	24	23		S-10: Stiff, gray, Silty (CLAY, trac	e fine San	d. (CL)					
REMARKS	1 - Afte	er Sam	ple S-2,	adva	ance 4	4" casing.	1					1	1	1		
See app bee thar	Log K roximate n made n those p	ey for boun at the presen	r explar daries b times a t at the f	nation etwee and u times	n of en so nder the n	sample de il and bedr the condition neasureme	escripti ock ty ons sta ents we	on and identification poes. Actual transitions mated. Fluctuations of grooter made.	procedures. Day be grac bundwater	Stratifica dual. Wate may occur	tion lines rep r level reading due to other f	resei s hav factoi	nt re rs	Explora G	ation No.: iZ-5	

G2A Express and Starting Vanasse trangen Brudtin, Inc. Express and Starting Express and Starting Logged by: E. Wordman Foroman: Wills, Maine Type of E(1): Maine Boring Location INC. (2003) Provide Starting Starting Hotmic Provide Starting Hotmic										TEST BORIN	G LOG							
Logged By: B. Woodman Type of Rig: ATV Brilling Co: Nuclear Portmax: W. Hockele Type of Rig: ATV Brilling Method: Data Statute Boing Location (ME)strates Groundware Dev (H): 30 but Statute H. Datum: Final Boring Doptin (H): 36 but Statute H. Datum: Final Boring D	G		GZA GeoE Engine	nvir or ers and S	n mei Scient	n tal, ists	Inc.			Vanasse Hangen E Wells RR St Wells, Ma	Brustlin, Ind ation ine	5.	EXPLORATION SHEET: PROJECT NO REVIEWED E	ON N 2 0: 09 3Y: 1	O.: (of 2 9.0026 N. Will	GZ-5 004.00 iams		
Groundware Depth (b): Coundware Depth (b): Hammer Yigh: Automatic Hammer Automatic Hammer Hammer Yigh: Automatic Hammer Sample Decription and Identification mail Identification (Internet Procedure) Markine CLAY Sample Decription at 36 feet. Sample Decription at 36 feet. Sample Decription Automatic Procedures	Logg Drilli Fore	jed By: ng Co.: man:	B. W New W. H	oodmar England loeckele	ı d Bori	ing Co	ontrac	tors	Type Rig N Drilli Drive 8	of Rig: ATV Iodel: Mobile B53 ng Method: Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface Ele ing Depth t - Finish:	,E): N177884.7, E ev. (ft.): 130.4 (ft.): 36 12/5/2018 - 12	28343 /5/20	337.3)18	H. Dat V. Dat	um: um:	
Hammer Weight (b): 1:00 Auger or Casing O.D.D bb (n):4.574 Auger or Casing O.D.D bb (n):4.574 Rock Core Size: Law Law Intel view of Dept Jacobian (Notified Burnister Procedure) Sampler Casing (n):5.20 (Notified Burnister Procedure) Law Sampler Casing (n):5.20 (Notified Burnister Procedure) Sampler Casing (n):5.20 (Noti	Ham	mer Ty	pe: Au	utomatic	Ham	mer			Sam	oler Type: SS		Dete	Ground	wate	r Dept	h (ft.)	Otab. T	
Depth Beards Team Sample No. Depth Pen/Rec. Blows SPT (Modified Burnister Procedure) Image: Strakum Security in all security in all security in all sec	Ham Ham Auge	mer We mer Fa er or Ca	eight (II (in.): asing (lb.): 14 : 30 D.D./I.D	0 Dia (i	n.): 4.	5"/4"		Sam Sam Rock	oler O.D. (in.): _{2.0} oler Length (in.): ₂₄ c Core Size:		12/5/18	1300		1.4		30 m	in in
1000 31.0 10.1 4.6 7 PP=21sf 10.1	Depth (ft)	Casing Blows/ Core	No.	Depth (ft.)	Samp Pen. (in)	Rec. (in)	Blo (per	ows 6 in.)	SPT Value	Sample Des (Modified	cription and Burmister	d Identifica Procedure	ition e)	Remark	Field Test Data	Depth (ft.)	Stratum Descriptio	n Elev. (ft.)
35 36.0 24 14 14 18 S-11: Dense, gray, fine to medium SAND, trace Gravel, 32.5 32.5	-	Tate		31.0			4	6	7	PP=2 tsf						MA		ΑΥ
35 S-11 34.0 24 14 14 18 2 S-11: Dense, gray, fine to medium SAND, trace Gravel, MARINE SAND 36 36.0 36.0 124 31 42 trace Sitt. (SP-SM) 36 94 40 36.0 36.0 14 14 18 16 94 40 36.0 14 14 14 14 18 94 40 36.0 14 14 14 12 17 18 94 40 36.0 14 14 14 14 16 14 14 16 14 14 18 14 14 16 14 14 16 14 14 16 14 14 16 14 16	-															32.5		97.9
360 24 31 42 trace Sitt (SP-SM) 36 96 96 360 36.0 36.0 Image: Sitt (SP-SM) 96 96 40 36.0 Image: Sitt (SP-SM) 96 96 40 36.0 Image: Sitt (SP-SM) 96 96 40 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 96 96 40 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 96 40 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 41 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 55 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 56 1mage: Sitt (SP-SM) 56 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 57 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 1mage: Sitt (SP-SM) 58 1mage: Sitt (SP-SM) 1mage:	- 35		S-11	34.0-	24	14	14	18		S-11: Dense, gray, fin	e to mediur	n SAND, t	race Gravel,			MA	RINE SA	ND
39.0 End of exploration at 36 feet. 40 - 45 - 50 - 50 - 50 - 60 - 55 - 60 - 55 - 60 - 55 - 60 - 55 - 60 - 55 - 60 - 55 - 60 - 55 - 60 - 56 - 60 - 57 - 60 - 57 - 60 - 57 - 60 - 58 - 60 - 59 - 60 - 59 - 59 - 59 - 59 - <	- 00			36.0 36.0-			24	31	42	trace Silt. (SP-SM)						36		94.4
40 -	-			36.0						End of exploration at 3	6 feet.							
See Log Key for explanation of sample description and identification procedures. Stratification lines, represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Huctuations is be gradual. Water level readings have GZ-5	40																	
45 -	-																	
45 -	-																	
50 -	45 _																	
See Log Key for explanation of sample description and identification procedures. Stratification lines, represent Stratification lines and under the conditions stated and transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors G2-5 G2-5 Stratification lines. represent Conditions stated and the times the measurements were under State of the times and under the conditions stated and the times the measurements were made. State of the times the measurements were under State of the times the times the measurement were under State of the times the measurement were under State of the times the times the times the times the measurement were under State of the times the	-																	
50	-																	
See Log Key for explanation of sample description and identification procedures. Stratification lines represent Statistic boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors GZ-5	50 _																	
See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors Exploration No.: GZ-5	-																	
55	-																	
60 SXEW 60 State 60 State State State See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times the measurements were made Exploration No.: GZ-5	55 _																	
60 SXX 60 SXX 80 State	-																	
60 State SXX State See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors Exploration No.: GZ-5	-																	
See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors GZ-5	60	<u> </u>			<u> </u>													
See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors GZ-5	MARKS																	
See Log Key for explanation of sample description and identification procedures. Stratification lines represent approximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors GZ-5	RE																	
Linan inose present at the times the measurements were made	See appro been	ee Log Key for explanation of sample description and identification procedures. Stratification lines represent proximate boundaries between soil and bedrock types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors GZ-5																

									TEST BORIN	IG LOG								
G		GZA GeoE	nviro 1 ers and S	1me i Scient	ntal,	, Inc.			VHB Wells RR St Wells, Ma	tation line		EXPLO SHEET PROJE REVIEV	RATIC : CT NC WED B	ON N 1 0: 09 3Y: 1	O.: (of 2 9.0026 N. Will	GZ-101 004.01 iams		
Logo Drilli Fore	jed By: ng Co.: man:	E. To New S. Sł	ombaug England naw	h d Bori	ing C	ontract	ors	Type Rig M Drilli Drive	of Rig: ATV Track Iodel: B-53 ng Method: & Wash	Boring L Ground S Final Bor Date Star	ocation (N Surface El ing Depth t - Finish:	I,E): See Pl ev. (ft.):1 (ft.): 39 : 8/3/2022	an 34.0 ? - 8/4/2	2022	2	H. Da V. Da	atum: atum: NAV	D88
Ham	mer Ty	be: Au	utomatic	Ham	ımer			Sami	nler Type: ss	1		G	round	wate	r Dept	h (ft.)		
Ham	mer We	eight (lb.): 14	0				Sam	pler O.D. (in.): 2.0		Date 8/4/22		me 746	- "	ater I ا ع	Depth	O 1 F	ime
Auge	mer Fa er or Ca	sing (Dia (i	i n.): 4.	5/4.0"		Sam	Core Size: NY		0/4/22		-10		0.0	, 	0.11	
	Casing			Samr											Field		Otrations	
Depth (ft)	Blows/ Core	No.	Depth (ft)	Pen.	Rec.	. Blov	WS	SPT Value	Sample Des (Modified	scription an I Burmister	d Identific Procedur	ation e)		Remai	Test	Depth (ft.)	Description	∏eV.) (£1)
	PUSH	S-1	0.0-	24	12	2	4	Value	S-1: Top 2": Dark brow	wn, Roots a	ind Silt, dr	ту.			Data	0.2	TOPSOIL	133.8
	1		2.0			4	6	8	Bottom 10": Medium de	ense, brow	n, fine to o	coarse SA	ND,	2				
-	1	S-2	2.0-	24	0	8	7		little Gravel, trace Silt,	dry. vel niece ir	tin of sno	on		3				
-	1		4.0			10	14	17		vei piece ii	r up or spe	011.		4			FILL	
-	1	S-3	4.0-	24	8	11	11		S-3: Medium dense, b	rown. fine	o coarse	SAND. tra	ace					
5_	1		6.0			8	7	19	Gravel, wet.			,						
-	1	S-4	6.0-	24	16	8 1	3		S-4 [.] Top 6" [.] Brown fir	ne to coars	e SAND t	race Grav	/el			6.5		127.5
-	1	• •	8.0			15	16	28	wet.				,					
-		S-5	8.0-	24	11	12	18		Bottom 10": Medium de	ense, tan, f	ine to me	dium SAN	ID,					
-	v	00	10.0			19	14	37	wet.	no to modiu		traco Gra	wol					
10 _	71								trace Silt, wet.		III OAND,		ivei,				ARINE SA	ND
-	87																	
-	85															12 5		121 5
-	112																	_ 12 1.0
-	172																	
15 _	64	56	15.0	24	10	5	7		S. 6: Vony stiff grove S		wot			5	4.5			
-	-	3-0	17.0	24	19	8 1	0	15		illy CLAT,	wei.				4.2			
-	100																	
-	72																IARINE CL	AY
-	75																	
20 _	92	67	20.0	24	6		S		C. 7: Von stiff grove C		trace fine	Cond wa						
-	70	5-7	20.0-	24	0		3 4	7	S-7. Very Sun, gray, S	ally CLAY,	trace line	Sand, we	ι.					
-	71								Increase in resistance	during rolle	r cone ad	vanceme	nt at			22.5		111 5
-	76								22.5'.									
-	114																	
25 _	98	6 0	25.0	04		10	12		S 9: Donoo harring fin	o to or								
-	82	3-0	25.0-	24	9	10	13 17	25	trace Silt. wet.	ie to coarse	SAND, I	me Grave	<i>;</i> 1,					
-	87		_						,									
	98																	
	120																	
30	120																	
6	1 - After	contin	uous sar	npling	in up r#N⊏	per 10.0)', adv	vanced	a solid stem auger to 10.0 siency ratio = 0.92)', then push	ed casing to	o 10.0'.						
RK	3 - Wat	er level	measure	ed imr	nediat	tely afte	r rem	loval of	casing.					//	-			
MA	4 - As-d 5 - Field	test d	ata colun	auons nn sho	were	esults of	field	pe lie n pocket	penetrometer test in tsf.	y structures.	Lievations	were surve	eyea by	/ VHb	Ο.			
R																		
											01							
See appro	Log K oximate	ey fo boun	r explaı daries b	natior petwe	າ of en sc	sample	e de bedro	scripti ock ty	on and identification p pes. Actual transitions m	procedures hay be grad	Stratificatual. Wate	ation line er level re	s repi adings	resei hav	nt 'e	Explo	oration No	0.:
been	made those r	at the	times a	and u times	nder the r	the co measur	nditio reme	ons sta ents we	ated. Fluctuations of gro ere made	oundwater	may occu	r due to c	other fa	acto	rs	C	22-101	

GZA TEMPLATE TEST BORING; 9/14/2022; 12:43:36 PM

								TEST BORIN	G LOG						
G		GZA GeoE Engine	nviro ers and S	imei Scient	n tal, ists	Inc.		VHB Wells RR St Wells, Ma	ation ine		EXPLORATI SHEET: PROJECT N REVIEWED	ON N 2 O: 09 BY: 1	O.: (of 2 9.0026 N. Will	GZ-101 004.01 iams	
Logo Drilli Fore	ged By: ng Co.: man:	E. To New S. SI	ombaugl England naw	n 1 Bori	ing Co	ontractors	Type Rig N Drilli Drive	of Rig: ATV Track Iodel: B-53 ng Method: & Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface Ele ing Depth rt - Finish:	,E): See Plan ev. (ft.): 134 (ft.): 39 8/3/2022 - 8/4	/2022	2	H. Datum: V. Datum: NAVD88	
Ham	mer Ty	pe: Au	utomatic	Ham	mer		Sam	oler Type: _{SS}		Dete	Ground	dwate	r Dept	h (ft.)	
Ham Ham Auge	mer We mer Fa er or Ca	eight (II (in.): asing (lb.): 14 : 30 O.D./I.D	0 Dia (i	n.): 4.	5/4.0"	Sam Sam Rock	bler O.D. (in.): _{2.0} bler Length (in.): ₂₄ Core Size: _{NX}		8/4/22	0746		8.5	' 0.1 hr	
Depth	Blows/	No	Depth	Samp Pen.	Rec.	Blows	SPT	Sample Des (Modified	cription an Burmister	d Identifica	ation	mark	Field Test	ta () Stratum () () () () () () () () () () () () ()	
(11)	Rate 104	S-9	(ft.) 30.0-	(in) 14	(in) 11	(per 6 in.) 146_63	Value	S-9: Very dense, grav	fine to me	dium SAN	D some Silt	Ř	Data		
-	178		31.2			178/2"	R	3" of rock fragments wi	thin the sa	mple.	B, some ont,			GLACIAL TILL	
-	104													32 102.0	
-	-							Increase in resistance	during rolle	er cone adv n wash reti	ancement at				
-	3:25	R1	34 0-	60	55	ROD =		roller cone to 34.0' and	setup to c	ore.					
35 _	4:36		39.0			48%		R1: Hard, fresh, coars	e grained,	black and	white,			DEDDOOK	
-	7:50							GRANITE. Primary joir	its are very	close to n	noderately			BEDKOCK	
-	9:54							partially open to moder	ately wide.	One mod	erately dipping	1			
-	8:33							joint, planar, smooth, d	iscolored, I	moderately	/ wide.				
-	0 Recovery = 92% 39 95.0 0 End of exploration at 39 feet. 39 95.0														
40 _	End of exploration at 39 feet.														
-															
-	-														
-	-														
-	-														
45 _	-														
-	-														
-	-														
-	-														
-	-														
50 _															
-															
-															
-															
-															
55 _															
-															
-															
60															
						-									
IKS															
AAR															
RE															
See	Log K	ey fo	r explar	nation	n of	sample de	escripti	on and identification p	rocedures.	Stratifica	tion lines rep	orese	nt I	Exploration No.:	
beer	made	at the	times a	and u	nder	the condition	ook iy ons sta	ated. Fluctuations of gro	undwater	may occur	due to other	factor	ŝ	GZ-101	
uian	inose p	nesen	n at the	unes	ule f	neasurenie	ans we								

								TEST BORIN	G LOG							
GZ		GZA GeoE	nviron ers and S	imei Scient	n tal, ists	Inc.		VHB Wells RR St Wells, Ma	ation ine		EXPLORATIO SHEET: PROJECT NO REVIEWED B	ON N 1 D: 0 3Y: 1	IO.: (of 2 9.0026 N. Will	GZ-102 004.01 iams		
Logg Drilli Forei	ed By: ng Co.: man:	E. To New S. SI	ombaugł Englanc naw	ר Bori	ng Co	ontractors	Type Rig N Drilli Drive	of Rig: ATV Track Iodel: B-53 ng Method: & Wash	Boring Lo Ground S Final Bor Date Star	ocation (N Surface El ing Depth t - Finish:	,E): See Plan ev. (ft.):130.5 (ft.): 49 8/2/2022 - 8/3/	2022	2	H. Da V. Da	tum: tum: NAV	′D88
Ham	mer Ty	թe: Aւ	utomatic	Ham	mer		Sam	pler Type: _{SS}		Data	Ground	wate	r Dept	h (ft.)	Stab. 7	
Hami Hami Auge	mer We mer Fa er or Ca	eight (II (in.) Ising (lb.): 140 : 30 O.D./I.D	0 Dia (i	n.): 4.	5/4.0"	Sam Sam Rock	pler O.D. (in.): _{2.0} pler Length (in.): ₂₄ a Core Size: _{NX}		8/3/22	0730		6.3	'	0.1 I	nr
Depth	Casing Blows/ Core	No	Depth	Samp Pen.	le Rec.	Blows	SPT	Sample Des (Modified	cription an	d Identifica	ation	emark	Field Test	epth (ft.)	Stratum Descriptio	n :.) (ff).
(11)	Rate	S-1	(ft.) 0.0-	(in) 24	(in) 10	(per 6 in.) 2 5	Value	S-1: Top 2": Topsoil.	Dannister		•)	<u> </u>	Data	0.2	TOPSOIL	- 130.3
-	 	S-2	2.0 2.0-	24	12	53	10	Bottom 8": Medium den	nse, brown dry.	, fine to co	arse SAND	1 2 3		2	FILL	128.5
-		S-3	4.0	24	12	9 12 12 13	13	S-2. Medium dense, a	e to mediu	m SAND	trace Silt wet	4				
5_		0-0	6.0	27	12	19 19	32			o AND				M	ARINE SA	ND
-		S-4	6.0- 8.0	24	16	15 16 18 25	34	S-4: Dense, brown, fin	ie to mediu	m SAND,	trace Silt, wet.		15	82		122.3
_ 10 _	 V 86	S-5	8.0- 10.0	24	15	63 57	8	S-5: Top 2": Fine to m Bottom 13": Stiff, gray,	edium SAN Silty CLAY	ID, trace S ′, wet.	Silt.		1.0	0.2		122.0
-	102 124 98													M	ARINE CL	AY
- 15 -	112 84	S-6	15.0- 17.0	24	14	24 9 7 10	16	S-6: Top 4": Fine to m Bottom 13": Very stiff,	edium SAN gray, Silty (ID and Sili CLAY, wet	, little Gravel.	5	2.8 1.8	15 15.3 S	AND SEA	115.5 115.2
- - 20 _	76 79 96												0.5			
-	53 82 87	S-7	20.0- 22.0	24	7	2 2 4 2	6	S-7: Medium stiff, gray	y, Silty CLA	Y, trace fi	ne Sand, wet.		0.0	M	ARINE CL	AY
_ 25 _ - -	95 80 94 102	S-8	25.0- 27.0	24	19	16 94	15	S-8: Stiff, gray, Silty C gravel.	LAY, wet. (One piece	of fractured		1.3 2.0			
- 30	123 133															
REMARKS	1 - After 2 - NEB 3 - Wat 4 - As-d 5 - Field	contir C Auto er leve rilled b I test d	uous san omatic Ha I measure oring loca ata colum	npling Immer ad imn ations nn shc	in up # NE nediat were ows re	per 10.0', ad BC-28; ener ely after rem based on ta sults of field	vanced gy effic noval of pe tie n pocket	l l a solid stem auger to 10.0 ciency ratio = 0.92. casing. neasurements from existing penetrometer test in tsf.	', then pushe	ed casing to	10.0'. were surveyed b	y VH	ц	<u> </u>		
See appro been	Log K oximate made	ey fo boun at the	r explar daries b times a	nation etwee and u	n of so en so nder	sample de il and bedr the conditi	escripti ock typons sta	on and identification p pes. Actual transitions n ated. Fluctuations of gro	procedures.	Stratifica Iual. Wate	tion lines rep r level readings	rese s hav	nt /e	Explo G	ration N	o.:

TEST BORING LOG																	
GZA GeoEnvironmental, Inc. Engineers and Scientists								VHB Wells RR Station Wells, Maine				EXPLORATION NO.: GZ-102 SHEET: 2 of 2 PROJECT NO: 09.0026004.01 REVIEWED BY: N. Williams					
Logo Drilli Fore	ged By: ng Co. man:	E. To New S. Sł	ombaugl England naw	า 1 Bori	ing Co	ontractors	Type of Rig: ATV Track Rig Model: B-53Boring Locatio Ground Surface Final Boring De Date Start - FinDrilling Method: Drive & WashDate Start - Fin			ocation (N Surface El ring Depth rt - Finish:	(N,E):See Plan Elev. (ft.): 130.5 oth (ft.): 49 sh: 8/2/2022 - 8/3/2022				H. Datum: V. Datum: NAVD88		
Hammer Type: Automatic Hammer							Sampler Type: SS Sampler O.D. (in.): 2.0 Sampler Length (in.): 24 Rock Core Size: NX			Data	Groundwater De			pth (ft.)			
Hammer Weight (Ib.): 140 Hammer Fall (in.): 30 Auger or Casing O.D./I.D Dia (in.):4.5/4.0"										8/3/22	0730		6.3		0.1	hr	
Depth	Blows/ Core No Depth Pen.Rec. Blows				Blows	SPT Sample Description and I (Modified Burmister P			d Identifica	I Identification		Field Test	(ft.)	Stratum Descriptio	in []e. (∄).		
(11)	Rate 101	S-9	(ft.) 30.0-	(in) 24	(in) 13	(per 6 in.) 7 12	Value	S-9: Top 6": Grav. Silt	V CLAY, w	et.	•)	×	Data	□ ⁻ 30.5		100.0	
-	118		32.0			16 10	28	Bottom 7": Dense, gray	y, fine SAN	ID and Silt	, wet.						
-	124																
-	186																
-	183													MA	ARINE SA	ND	
35 _	115	S-10	35.0-	24	3	63		S-10: Medium dense,	gray, fine S	SAND, son	ne Silt, wet.						
-	112		37.0			42	7										
-	98																
-	114													38.5		92.0	
40 _	92																
-	100	S-11	40.0-	24	11	7 10	23	S-11: Medium dense,	tan, fine to	coarse SA	AND, some			G	LACIAL T	ILL	
-	167		42.0			10 12	23			····							
-	188/6"							Casing resistance at 4	3.5. Advan	ced roller of	cone to 44.0'			43.5		87.0	
-	2:35	R1	44 0-	60	22	ROD =		R1. Hard fresh coars	e grained	black and	white						
45 _	8:48		49.0			12%		GRANITE. Primary joir	nts are clos	ely space	d, low angle,						
-	3:22							planar, smooth, discolo Secondary joints are c	ored, mode loselv spac	erately wide	e to very wide. ngle_planar				BEDROC	к	
-	2:46							smooth, discolored.									
-	8:06							Recovery = 37%						49		81.5	
50								End of exploration at 4	9 feet.					-			
-	-																
-	-																
-	-																
55 _	-																
-	-																
-	-																
-	-																
- 60	1																
		1	1											1			
RKS																	
MA																	
R																	
See appr	Log K oximate	ey fo boun	r explar daries b	natior betwe	າ of en sc	sample de	escripti ock ty	on and identification p pes. Actual transitions n	procedures nay be grad	. Stratifica dual. Wate	ntion lines rep r level reading	oresei s hav	nt I 'e	Exploi	ration N	lo.:	
been than	i made those p	at the presen	times a t at the	and u times	nder the r	the condition	ons st ents we	ated. Fluctuations of gro ere made.	oundwater	may occui	due to other	ractor	S	G	2-102		

7/14/2023 PASSENGER RAIL STATION IMPROVEMENTS WELLS TRANSPORTATION CENTER 09.0026004.01

APPENDIX C – LABORATORY TEST RESULTS

	195 Frances Avenue	Client Information:	Project Inform	ation:	
	Cranston RI, 02910	GZA GeoEnvironmental	Wells Transportation Center Improvements		
	Phone: (401)-467-6454	Portland, ME	Wells, MI	Ξ	
	Fax: (401)-467-2398	PM: NVW	GZA Project Number: (9.0026004.00	
ENGINEEDING	thielsch.com	Assigned By: NVW	Summary Page:	1 of 1	
ENGINEERING	Let's Build a Solid Foundation	Collected By: BLJ	Report Date:	1.4.19	

LABORATORY TESTING DATA SHEET

						Id	lentifica	tion Tes	sts					Proctor	·/CBR/Pe	ermeability	/ Tests			
Boring ID	Sample No.	Depth (ft)	Laboratory No.	As- Recieved Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	Gs	Dry unit wt. pcf	Test Water Content %	γ _d <u>MAX (pcf)</u> W _{opt} (%)	γ _d <u>MAX (pcf)</u> W _{opt} (%) (Corr.)	Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Perme- ability (cm/sec)	Laboratory Log and Soil Description
				D2216	D4	318		D6913		D2874	D854			D1	557		D1	883		
GZ-2	S-1	0-2	S-1	18.6			20.7	68.4	10.9											Brown f-c SAND, some fine Gravel, little Silt
GZ-2	S-2	2-4	S-2	20.8			0.0	93.1	6.9											Light Brown f-m SAND, trace Silt
GZ-3	S-6	10-12	S-3	17.6																
GZ-3	S-7	19-21	S-4	28.9																
GZ-3	S-8	34-36	S-5	4.8																
GZ-3	S-9	44-46	S-6	21.1																
GZ-4	S-1	0-2	S-7	24.1			30.9	56.5	12.6											Brown f-c SAND, some fine Gravel, little Silt
GZ-4	S-2	2-4	S-8	27.1			0.0	77.8	22.2											Brown f-m SAND, some Silt
GZ-5	S-3(Lower 11")	4-6	S-9	19.7			0.0	92.4	7.6											Dark Brown f-m SAND, trace Silt
GZ-5	S-4	6-8	S-10	18.3			0.0	95.5	4.5											Brown f-m SAND, trace Silt

Reviewed by:

01.05.2019

Wells Transportation Center Improvements

Town(s): Wells, ME

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

MDOT Project Number:

GZA Project Number: 09.0026004.00

Boring & Sample	Station	Sample	Depth	Lab	Organic	W.C.	L.L.	P.I.	C	Classification	
Identification Number	(Feet)	No.	(Feet)	Number	%				Unified	AASHTO	Frost
GZ-2		S-1	0-2	S-1		18.6			SP-SM	A-1-b	II
GZ-2		S-2	2-4	S-2		20.8			SP-SM	A-3	0
GZ-3		S-6	10-12	S-3		17.6					
GZ-3		S-7	19-21	S-4		28.9					
GZ-3		S-8	34-36	S-5		4.8					
GZ-3		S-9	44-46	S-6		21.1					
GZ-4		S-1	0-2	S-7		24.1			SM	A-1-b	Ш
GZ-4		S-2	2-4	S-8		27.1			SM	A-2-4(0)	III
GZ-5		S-3 (Lower 11')	4-6	S-9		19.7			SP-SM	A-3	=
GZ-5		S-4	6-8	S-10		18.3			SP	A-3	0
Classification is followed by The "Fro	of these soi the "Frost S st Susceptil	l samples is susceptibility pility Rating	in accordance y Rating" from " is based upor	with AASHT zero (non-front the MDOT a	O Classifi ost suscep and Corps	cation otible) to of Eng	Systen o Clas jineers	n M-14 s IV (I Clas	45-40. This nighly frost sification S	classification susceptible) systems.	n

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

LETTER OF TRANSMITTAL

Date:		Project No.:
	January 25, 2019	0876-015
Attenti	on:	
	Nicholas Williams P.E	. (nicholas.williams@gza.com)
Re:		
	Laboratory Testing	
	Wells Transportation (Center Imp. #: 09.0026004.00
	Wells MF	-

We are sending you attached Laboratory Test Results.											
	ь 1	Laboratory No. (s)	Test (s) Performed								
76		15366a	Consolidation Test Report, Dial Reading vs. Time, Vane Shear, & Liquid and Plastic Limits								
	17.51	1 5 366b	Consolidation Test Report, Dial Reading vs. Time Vane Shear, & Liquid and Plastic Limits								

Remarks:

GZA Geoenvironmental

477 Congress Street

Portland, ME 04101

Copy to:

MIG

MTG

Mib

Dial Reading vs. Time

Project No.: 0876-015 Project: Wells Transportation Center Improvements #:09.0026004.00

Location: B-1 Depth: 15'-17.5' Sample Number: U-1

Lab No. 1534

Laboratory Vane Shear Test Results

ASTM D4648 Standard Test Method for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil

Project:	Wells Transportation Center Improvement	Location	: 1	Wells, ME		3
Client:	GZA GeoEnvironmental, Inc.	Date:	12/2	1/2018		
Project No.:	0876-015	Test Dep	oth:	15.23	to	15.79

Boring/Sample No.		B-1				Lab No.	15366a		
Test No.	Test Depth (ft)	Vane Size	Max. Torque (Undisturbed) (kg-cm)		Max. Torque (Remolded) (kg-cm)	Undrained Shear Strength (psf)	Undrained Shear Strength (psf)	Moisture Content	
	15.23							26%	
	15.38							22%	
	15.46							21%	
	15.79							22%	

Vane Size							
(mm)							
S	16 x 32						
М	20 x 40						
L	24.5 x 50.8						

Tested By: JRF

Checked By: _____MB-

G R.W. Gillespie & Associates

86 Industrial Park Rd., Suite 4, Saco ME 04072, 207-286-8008 / 200 International Dr., Suite 170, Portsmouth NH 03801, 603-427-0244

64 66 - 7 - P.

Tested By: JRF/AGS _____ Checked By: MTG

My

MG

MF

Dial Reading vs. Time

Project No.: 0876-015 Project: Wells Transportation Center Improvements #:09.0026004.00

Location: B-1 Depth: 26'-28.5' Sample Number: U-2

R.W. Gillespie & Associates, Inc.

Biddeford, Maine

Lab No. 153

Laboratory Vane Shear Test Results

ASTM D4648 Standard Test Method for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil

Project:	Wells Transportation Center Improvement	Location:	Wells, ME		
Client:	GZA GeoEnvironmental, Inc.	Date: 12	/21/2018		
Project No.:	0876-015	Test Depth	: 26.19	to	26.77

Boring/	Sample No.	B-1			Lab No.	15366b		
Test No.	Test Depth (ft)	Vane Size	Max. Torqu (Undisturbed (kg-cm)	Torque Max. Torque Sheat Sturbed) (Remolded) (kg-cm) (psf		Undrained Shear Strength (psf)	Moisture Content	
1	26.19	М	74	19	1545	397	21%	
2	26.31	М	100	22	2089	459	22%	
3	26.44	М	121	18	2527	376	21%	
4	26.77	S	69	17	2882	710	20%	

Vane Size							
(mm)							
S	16 x 32						
М	20 x 40						
L	24.5 x 50.8						

Tested By: JRF

Checked By:

6 R.W. Gillespie & Associates

86 Industrial Park Rd., Suite 4, Saco ME 04072, 207-286-8008 / 200 International Dr., Suite 170, Portsmouth NH 03801, 603-427-0244

THIELSCH	195 Frances Avenue Cranston RI, 02910 Phone: (401)-467-6454 Fax: (401)-467-2398	Client Information: GZA GeoEnvironmental South Portland, ME PM: Nicholas Williams	Project Informatio Wells Transportation Cente Wells, Me Client Project Number: 09.	on: r Final Design 0026004.01
ENGINEERING	thielsch.com	Assigned By: Nicholas Williams	Summary Page:	1 of 1
	Let's Build a Solid Foundation	Collected By: Emma Tombaugh	Report Date:	09.07.22

LABORATORY TESTING DATA SHEET, Report No.: 7422-H-200

				Identification Tests																	
Boring	Sample No.	Depth (ft)	Laboratory No.	As Received Moisture Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	рН	Dry unit wt. (pcf)	Test Moisture Content %	γ_d $\frac{MAX (pcf)}{W_{opt} (\%)}$	$\begin{array}{c} \gamma_d \\ \underline{MAX \ (pcf)} \\ W_{opt} \ (\%) \\ (Corr.) \end{array}$	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description	
				D2216	D2216 D4318		D6913		D2974	4 D4792			D1557								
GZ-101	S1	0-2	22-S-3299	3.4			15.9	76.5	7.6											Brown f-c SAND, little fine Gravel, trace Silt	
GZ-101	S 5	8-10	22-S-3300	18.2			0.5	93.9	5.6											Brown f-m SAND, trace Silt, trace fine Gravel	
GZ-101	S8	25-27	22-S-3301	11.3			12.5	78.4	9.1											Brown f-c SAND, little f-c Gravel, trace Silt	
GZ-102	S 3	4-6	22-S-3302	21.3			0.0	93.1	6.9											Brown fine SAND, trace Silt	
GZ-102	S 6	15-17 Bott 10"	22-S-3303	20.4	33	18														Grey CLAY & SILT	
GZ-102	S 8	25-27	22-S-3304	19.7	33	17														Grey CLAY & SILT	
GZ-102	S9	30-32	22-S-3305	15.0			0.0	27.9	72.1											Grey CLAY & SILT, some fine Sand	

Date Received:

08.29.22

Reviewed By:

flifet

Date Reviewed: 09.07.22

This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made.

This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

Wells Transportation Center Final Design

Town(s): Wells, ME

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

MDOT Project Number:

GZA Project Number: 09.0026004.01

Boring & Sample	Station	Sample	Depth	Lab	Organic	W.C.	L.L.	P.I.	Classification				
Identification Number	(Feet)	No.	(Feet)	Number	%				Unified	AASHTO	Frost		
GZ-101		S1	0-2	S-3299		3.4			SW-SM	A-1-b	0		
GZ-101		S5	8-10	S-3300		18.2			SP-SM	A-3	0		
GZ-101		S8	25-27	S-3301		11.3			SW-SM	A-1-b	Ш		
GZ-102		S3	4-6	S-3302		21.3			SP-SM	A-3	0		
GZ-102		S6	15-17	S-3303		20.4	33	18	CL	A-6	IV		
GZ-102		S8	25-27	S-3304		19.7	33	17	CL	A-6	IV		
GZ-102		S9	30-32	S-3305		15.0			CL	A-6			
Classification	of these soi	l samples is	in accordance	with AASHT	O Classifi	cation	Systen	n M-1	45-40. This	classificatio	n		
is followed by	the "Frost S	Susceptibility	y Rating" from	zero (non-fro	ost suscep	otible) t	o Clas	s IV (I	highly frost	susceptible)			
The "Fro	The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.												

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98 $\,$

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

Checked By: Rebecca Roth